STEM

Establishing community in the classroom can be a challenge. Here's an activity my students participated in on the first day of school. I learned about this activity while participating in the Advanced Educator International Space Camp in Huntsville, Alabama. The objective is for two crews of astronauts to exchange positions in cramped quarters when a new crew shows up to relieve the old crew at the International Space Station.

How the Game is Played

SSC_StartingPosition

Players must follow these rules:

  1. Only one person can move at a time.
  2. Only movement forward (in the direction a person faces) is allowed. In the above diagram, orange players can only move right, while blue players can only move left.
  3. A person can move to an empty space in front of them.
  4. A person can jump an opposing team member in front of them.

What Does It Mean to Win the Game?

The teams win the challenge when they have exchanged their original positions. See the ending position diagram for an example of what this looks like.

SSC_EndingPosition

 

What If...?

A teacher could use an agility (speed) ladder for this activitTapeOnFloory. Or if a ladder isn't handy, use tape. This is a shot of my classroom the first day. It's pretty unlikely a teacher would have only eight students. I put down three tape ladders in my classroom on the floor. If the number of students is not a multiple of eight (like my class was), the teacher could place the extra students on the side as coaches. To up the responsibility of the coach, add the rule that no one inside the ladder can talk to anyone else.

Teacher Moves

While this activity was going on, I floated between the groups and listened very carefully. I wanted to learn about which of my students would step up and take initiative; which would be a leader; which would be concerned about the frustration of others and take action to minimize other students' discomfort/anxiety. This activity helped me better understand how to assign groups for course work in a meaningful way.

Examples of Student Moves

Below is an example of what some students might do.

ExampleOfMoves

 

If the third blue player from the right jumps the lone orange player, the blue team has a problem. With two blue players in adjacent cells, the game is gridlocked and ends.

 

Computational Thinking

Once the students came up with the solution, I gave them the sequence "1-2-3-4-4-3-2-1" and asked them how it relates to this situation. Think of this sequence as the answer key.

1: Orange moves first
2: Blue moves next - twice
3: Orange moves three times
4: Blue moves four times
4: Orange moves four times
3: Blue moves three times
2: Orange moves two times
1: Blue moves one time

Low Entry, High Ceiling (Extending the Task)

  • Ask the students to come up with some pseudo-code to describe how they would build this game on a computer using programming applications.
  • Ask the students whether the strategy remains the same if there are teams of five? Or if there are two empty middle squares? Three empty middle squares?
  • Ask the students to write a program that allows the user to watch the game. Then ask the students to write a program that allows the user to play the game.ExampleOfMoves
  • Example from my classroom I had two students come up with different lines of thinking for coding this game on a computer. One student thought of a number line to label each cell, using the values -4, -3, -2, -1, 0, 1, 2, 3, 4. Another student thought of simply have numbers represent each student. The starting configuration would be
    1 2 3 4 _ 5 6 7 8. Then, each move would be a shuffling of the sequence. The second row would be 1 2 3 _ 4 5 6 7 8. The third row would be 1 2 3 5 4 _ 6 7 8. The fourth row would be 1 2 3 5 _ 4 6 7 8. We had a really spirited discussion of the issues that could arise from each organizational coding strategy.

 

A few years ago, one of our local elementary schools had a 50th anniversary celebration. The principal of the school contacted me regarding an anniversary photo the school wished to take with students and staff. The principal asked our Math Theory & Problem Solving class to come up with the "most aesthetically" pleasing dimensions for the photo. Our class was tasked with using mathematical methods to systematically design the dimensions of both digits.

Here's a quote from the newspaper article about the photo before it was taken:

Browning, who has taught at the school since 1976, starting as a music instructor and then principal in 1998, said Friday would begin with the weekly assembly in the gym.

“Each class will perform a song from each decade, starting with the 1960s,” she said. Browning added the day-long celebration for students would also include special drawings for prizes, carnival games and the group photograph – if it’s not raining. The students and staff will form a “5-0” and have their picture taken by Downey’s Photography from the Scottsbluff Fire Department’s aerial ladder truck.

The principal emailed some information about how many students and staff would be involved in the photo, the approximate height of the aerial ladder, and that the photo would be taken in a field adjacent to the elementary school.

MonaLisaGoldenRatioOur class used mathematics to figure out the size of the viewing field of the camera (based on conservative estimates regarding the camera lens viewing angle). The students did some research and found information on the Golden Ratio, a number that appears over and over again in artwork.

The students wrote instructions for the staff members to utilize when organizing the photograph. We discussed the challenge of keeping that many students organized and engaged for a sufficient period of time in which the photographer could take the photo.

Below is a screenshot of the photo taken to celebrate the 50th anniversary of Westmoor Elementary.

(photo by Downey Photography)

Westmoor50

 

After the photo was taken, I asked my students, "If we compute the ratio of the width of each number to the height of each number, how close is the actual value to our recommendation of the golden ratio (approximately 1.618)?"

Below are screenshots from the Geogebra worksheet examining how close the dimensions are to the target value of 1.618.

Westmoor-50-Question

Screenshot with the initial question. Students can use measurement tools to judge whether or not the 5 and 0 in the photo meet the desired dimensions.

Westmoor-50-Solution

Clicking on the checkbox in the Geogebra sheet (Show / Hide Measurements and Ratios) reveals the details in evaluating how close the ratio of height to width for each digit is to the Golden Ratio.

Westmoor-50-Solution-With-Details

Here are the details to the Geogebra sheet. If you would like to download the Geogebra sheet and mess with the values to see what happens, you can find the Geogebra sheet here.

I was working on preparing problems for precalculus class on inverse functions. I started to type the following run-of-the-mill problem type:

If f(x) = blah and g(x) = bleh, show f(x) and g(x) are inverse functions.

And the work usually goes something like this:

f(g(x)) = f(bleh) = algebra kung fu happens here = x
g(f(x)) = g(blah) = some more algebra kung fu = x
Then conclude f(x) and g(x) are inverses.

Without thinking about it, I typed f(x) = -x - 6. Then I wrote the statement on my pad of paper, started working... exchanged the y and x, solved for y.... and got the exact same function.

y = -x - 6. Hmmm.

A part of me wondered if I had made a careless error. Double checked. Nope. No error. I wondered if the graph of the function was its own reflection across the y = x line.

InverseFunction

Sure enough... Since y = -x - 6 is perpendicular to the line y=x, it will be its own reflection across the y=x line and consequently its own inverse. In fact, this made me think of an interesting question to pose to my students...

"Can you define a class of linear functions that are all their own inverses?"

In hindsight, perhaps I should be more mindful when constructing tasks for my students. But then again, this would be a great discussion to have with my students. Why does the function end up being its own inverse? Can we think of non-linear functions that are their own inverse? Can we define these classes of functions carefully?

2014-10-02_1234This post contains resources for the talk "Using Statistics in Mathematics Classes" given by Jason Vitosh (Falls City High School, Falls City, NE) and myself at the Midwest Regional Noyce Conference on Thursday, October 2 from 2:15 pm - 3:00 pm.

SlideImage

 

Click on the link below to access the presentation file containing resources, images, and links.

10-2-14 Stats is not Math

 

 

 

 

 

 

 

 

 

 

lkajsdfl

We held our first bowl team session in MTPS today: an friendly, informal competition dividing the class into two groups of roughly equal 'ability.' The bowl competition we attend at the University of Nebraska-Lincoln in November consists of games of 15 questions with 30 seconds to answer each question.

Here is a question we spent some time on in class today.

Original_Cube_Bowl_Question

 

Here is a screenshot from my Promethean board of the work we did as a group with students:

Find_Side_of_Cube_Given_Sum_of_All_Possible_Edges

And here is a screenshot from the Geogebra sheet students constructed in front of the class at my computer terminal to demonstrate what is going on in this problem. If you would prefer to download the Geogebra sheet for your own tinkering, you can find it here.

Cube_Bowl_Question

No one got this question right in the allotted 30 seconds, so we spent some time developing the various parts of the expression. We color coded the edges on the cube (segments AB, AD, and AG) orange. We color coded the diagonals on faces of the cube (segments AC, AH, and AJ) green. We color coded the segment inside the cube (segment AI) black.

The kids had a lot of fun with building the Geogebra sheet and then trying to reconcile between sqrt(2) and the crudely rounded segment length 1.41. Or the sqrt(3) and 1.732.

The pink stuff at the top of Promethean board screen shot is our efforts to generalize this question. I tell the kids we are trying to "hack all possible problems." We use the term invariant and that we are looking to write a question that covers all possible question types. For example, what would happen to the question if s = 2? Or if s=3? Or if s=n? Is it possible to answer the question before the moderator finishes reading it? If so, at what point can we be confident we can buzz in and answer correctly?