Awesome Bowl Question: Segments in a Cube

We held our first bowl team session in MTPS today: an friendly, informal competition dividing the class into two groups of roughly equal 'ability.' The bowl competition we attend at the University of Nebraska-Lincoln in November consists of games of 15 questions with 30 seconds to answer each question.

Here is a question we spent some time on in class today.

Original_Cube_Bowl_Question

 

Here is a screenshot from my Promethean board of the work we did as a group with students:

Find_Side_of_Cube_Given_Sum_of_All_Possible_Edges

And here is a screenshot from the Geogebra sheet students constructed in front of the class at my computer terminal to demonstrate what is going on in this problem. If you would prefer to download the Geogebra sheet for your own tinkering, you can find it here.

Cube_Bowl_Question

No one got this question right in the allotted 30 seconds, so we spent some time developing the various parts of the expression. We color coded the edges on the cube (segments AB, AD, and AG) orange. We color coded the diagonals on faces of the cube (segments AC, AH, and AJ) green. We color coded the segment inside the cube (segment AI) black.

The kids had a lot of fun with building the Geogebra sheet and then trying to reconcile between sqrt(2) and the crudely rounded segment length 1.41. Or the sqrt(3) and 1.732.

The pink stuff at the top of Promethean board screen shot is our efforts to generalize this question. I tell the kids we are trying to "hack all possible problems." We use the term invariant and that we are looking to write a question that covers all possible question types. For example, what would happen to the question if s = 2? Or if s=3? Or if s=n? Is it possible to answer the question before the moderator finishes reading it? If so, at what point can we be confident we can buzz in and answer correctly?

Leave a Reply